
A BETTER APPROACH TO MINE
FREQUENT ITEMSETS USING APRIORI

AND FP-TREE APPROACH

Thesis submitted in partial fulfillment of the requirements for the award of
degree of

Master of Engineering
in

Computer Science and Engineering

Submitted By
Bharat Gupta

(Roll No. 800932006)

Under the supervision of:

Mr. Karun Verma Dr. Deepak Garg
Assistant Professor, CSED Assistant Professor, CSED

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT
THAPAR UNIVERSITY

PATIALA – 147004

June 2011

i | P a g e

CERTIFICATE

I hereby certify that the work which is being presented in the thesis entitled, “A Better

Approach to Mine Frequent Itemsets Using Apriori and FP-tree Approach”, in

partial fulfillment of the requirements for the award of degree of Master of Engineering

in Computer Science and Engineering submitted in Computer Science and Engineering

Department of Thapar University, Patiala, is an authentic record of my own work carried

out under the supervision of Dr. Deepak Garg and Mr. Karun Verma refers other

researcher’s work which are duly listed in the reference section.

The matter presented in the thesis has not been submitted for award of any other degree

of this or any other University.

 (Bharat Gupta)

This is to certify that the above statement made by the candidate is correct and true to the

best of my knowledge.

(Mr. Karun Verma)
Computer Sc. & Engg. Department,
Thapar University
Patiala

(Dr. Deepak Garg)
Computer Sc. & Engg. Department,
Thapar University,
Patiala

Countersigned by

(Dr. Maninder Singh)
Head
Computer Sc. & Engg. Department,
Thapar University
Patiala

(Dr. S. K. Mohapatra)
Dean (Academic Affairs)
Thapar University
Patiala

ii | P a g e

ACKNOWLEDGEMENT

It is a great pleasure for me to acknowledge the guidance, assistance and help I have

received from Dr. Deepak Garg. I am thankful for his continual support, encouragement,

and invaluable suggestions. He not only provided me help whenever needed, but also the

resources required to complete this thesis report on time.

I wish to express my gratitude to Mr. Karun Verma , Computer Science and Engineering

Department, for introducing me to the problem and providing invaluable advice

throughout the thesis.

I am also thankful to Dr. Maninder Singh, Head, Computer Science and Engineering

Department for his kind help and cooperation.

I would also like to thank all the staff members of Computer Science and Engineering

Department for providing me all the facilities required for the completion of my thesis

work.

I would like to say thanks for support of my classmates. I want to express my

appreciation to every person who contributed with either inspirational or actual work to

this thesis.

I am highly grateful to my parents and brother for the inspiration and ever encouraging

moral support, which enabled me to pursue my studies.

Bharat Gupta

(800932006)

iii | P a g e

ABSTRACT

As with the advancement of the IT technologies, the amount of accumulated data is also

increasing. It has resulted in large amount of data stored in databases, warehouses and

other repositories. Thus the Data mining comes into picture to explore and analyze the

databases to extract the interesting and previously unknown patterns and rules known as

association rule mining.

In data mining, Association rule mining becomes one of the important tasks of

descriptive technique which can be defined as discovering meaningful patterns from large

collection of data. Mining frequent itemset is very fundamental part of association rule

mining.

Many algorithms have been proposed from last many decades including horizontal layout

based techniques, vertical layout based techniques, and projected layout based

techniques. But most of the techniques suffer from repeated database scan, Candidate

generation (Apriori Algorithms), memory consumption problem (FP-tree Algorithms)

and many more for mining frequent patterns.

As in retailer industry many transactional databases contain same set of transactions

many times, to apply this thought, in this thesis present a new technique which is

combination of present maximal Apriori (improved Apriori) and FP-tree techniques that

guarantee the better performance than classical aprioi algorithm.

Another aim is to study and analyze the various existing techniques for mining frequent

itemsets and evaluate the performance of new techniques and compare with the existing

classical Apriori and FP- tree algorithm.

iv | P a g e

TABLE OF CONTENTS

CERTIFICATE .. i

ACKNOWLEDGEMENT .. ii

ABSTRACT ... iii

LIST OF FIGURES ... vi

LIST OF TABLES .. vii

1. Introduction ... 1

1.1. Data Mining.. 1

1.2. Data Mining Applications .. 2

1.3. The Primary Methods of Data Mining ... 3

1.4. Introduction to Association Rule Mining ... 4

1.5. Basic Concepts ... 5

1.6. Searching Frequent Itemsets .. 6

1.7. Why Mining Frequent Itemsets for Association Rules .. 7

1.8. Methodology .. 7

2. Literature Review .. 8

2.1. Algorithms for Mining from Horizontal Layout Database 9

2.1.1. Apriori Algorithm ... 9

2.1.2. Direct Hashing and Pruning (DHP): ... 12

2.1.3. Partitioning Algorithm: ... 12

2.1.4. Sampling Algorithm: .. 13

2.1.5. Dynamic Itemset Counting (DIC):.. 14

2.1.6. Improved Apriori algorithm .. 14

2.2 Algorithms for Mining from Vertical Layout Database..................................... 15

2.2.1 Eclat algorithm .. 16

2.3 Algorithms for Mining from Projected Layout Based Database........................ 17

2.3.1 FP-Growth Algorithm ... 18

2.3.2 COFI-Tree Algorithm ... 21

2.3.3 CT-PRO Algorithm ... 25

v | P a g e

2.3.4 H-mine Algorithm ... 28

3. Problem Formulation ... 29

3.1 Motivation .. 29

3.2 Gap Analysis .. 29

3.3 Problem statement .. 30

3.4 The Proposed Objectives .. 31

3.5 Methodology Used ... 31

3.6 Importance .. 32

4. Implementation of Novel Approach .. 33

4.1 Business Understanding ... 34

4.1.1 Market Based analysis .. 34

4.1.2 Objective of Market Based Analysis .. 34

4.2 Data Assembling .. 35

4.3 Existing Techniques Comparisons ... 35

4.3.1 Comparison of Classical Algorithms: ... 36

4.3.2 Comparison of FP-Tree variations: ... 37

4.4 Model Building .. 38

4.4.1 Implementation of New Mining Algorithm with Example 39

5. Testing and Result ... 45

5.1 Comparison Analysis ... 45

5.1.1 Time Comparison.. 45

5.1.2 Memory Comparison .. 47

6. Conclusion and Future Research ... 49

6.1 Conclusion .. 49

6.2 Future Trends ... 50

Publications ... 51

References ... 52

vi | P a g e

LIST OF FIGURES

Figure 1-1: Data mining applications in 2008(http://www. kdnuggets. com). 3

Figure 2-1: Mining Frequent itemsets using Partition algorithm [13] 13

Figure 2-2: FP-Tree Constructed For Sample Database ... 20

Figure 2-3: I9 COFI Tree .. 22

Figure 2-4: I7 COFI Tree .. 23

Figure 2-5: Mining E COFI tree for branch (I7, I3, I5) .. 24

Figure 2-6: Mining I7 COFI tree for branch (I7, I5)... 24

Figure 2-7: CFP-Tree for Table 2-3 .. 26

Figure 2-8: Frequent itemsets in Projection 5 ... 27

Figure 4-1: Methodology used to mine frequent itemsets .. 33

Figure 4-2 : FP-tree for transaction Table 4-4 .. 44

Figure 5-1: The Execution Time for Mushroom Dataset.. 45

Figure 5-2: Execution Time for Artificial dataset... 46

Figure 5-3: The memory usage at various support levels on Mushroom dataset 47

Figure 5-4: The memory usage at various support levels on artificial dataset 47

vii | P a g e

LIST OF TABLES

Table 2-1: Horizontal Layout Based Database ... 9

Table 2-2: Comparison of aprori and improved Apriori [16] ... 15

Table 2-3: Vertical layout based database .. 16

Table 2-4 : Sample database ... 19

Table 2-5: Frequency of Sample Database ... 20

Table 4-1: The Datasets .. 35

Table 4-2: Comparison of classical algorithms .. 36

Table 4-3: The Comparison of FP-variations ... 37

Table 4-4: Sample Retailer Transactional Database ... 41

Table 4-5: Itemsets in array of Table 4-4.. 42

Table 4-6: Pruned database of Table 4-4 .. 43

Table 4-7: frequency of itemsets of Table 4-4 .. 43

Table 4-8: Mining the FP-tree by creating conditional (Sub-) pattern base of Table 4-4 44

1 | P a g e

CHAPTER 1

1. Introduction

With the increase in Information Technology, the size of the databases created by the

organizations due to the availability of low-cost storage and the evolution in the data

capturing technologies is also increasing,. These organization sectors include retail,

petroleum, telecommunications, utilities, manufacturing, transportation, credit cards,

insurance, banking and many others, extracting the valuable data, it necessary to explore

the databases completely and efficiently. Knowledge discovery in databases (KDD) helps

to identifying precious information in such huge databases. This valuable information can

help the decision maker to make accurate future decisions. KDD applications deliver

measurable benefits, including reduced cost of doing business, enhanced profitability,

and improved quality of service. Therefore Knowledge Discovery in Databases has

become one of the most active and exciting research areas in the database community.

1.1. Data Mining

This is the important part of KDD. Data mining generally involves four classes of task;

classification, clustering, regression, and association rule learning. Data mining refers to

discover knowledge in huge amounts of data. It is a scientific discipline that is concerned

with analyzing observational data sets with the objective of finding unsuspected

relationships and produces a summary of the data in novel ways that the owner can

understand and use. Data mining as a field of study involves the merging of ideas from

many domains rather than a pure discipline the four main disciplines [25], which are

contributing to data mining include:

• Statistics: it can provide tools for measuring significance of the given data,

estimating probabilities and many other tasks (e. g. linear regression).

• Machine learning: it provides algorithms for inducing knowledge from given data

(e. g. SVM).

2 | P a g e

• Data management and databases: since data mining deals with huge size of data,

an efficient way of accessing and maintaining data is necessary.

• Artificial intelligence: it contributes to tasks involving knowledge encoding or

search techniques (e. g. neural networks).

1.2. Data Mining Applications

Data mining has become an essential technology for businesses and researchers in many

fields, the number and variety of applications has been growing gradually for several

years and it is predicted that it will carry on to grow. A number of the business areas with

an early embracing of DM into their processes are banking, insurance, retail and telecom.

More lately it has been implemented in pharmaceutics, health, government and all sorts

of e-businesses (Figure 1-1).

One describes a scheme to generate a whole set of trading strategies that take into

account application constraints, for example timing, current position and pricing [24].

The authors highlight the importance of developing a suitable back testing environment

that enables the gathering of sufficient evidence to convince the end users that the system

can be used in practice. They use an evolutionary computation approach that favors

trading models with higher stability, which is essential for success in this application

domain.

Apriori algorithm is used as a recommendation engine in an E-commerce system. Based

on each visitor‘s purchase history the system recommends related, potentially interesting,

products. It is also used as basis for a CRM system as it allows the company itself to

follow-up on customer‘s purchases and to recommend other products by e-mail [13].

A government application is proposed by [26]. The problem is connected to the

management of the risk associated with social security clients in Australia. The problem

is confirmed as a sequence mining task. The action ability of the model obtained is an

essential concern of the authors. They concentrate on the difficult issue of performing an

evaluation taking both technical and business interestingness into account.

3 | P a g e

 Figure 1-1: Data mining applications in 2008(http://www. kdnuggets. com).

1.3. The Primary Methods of Data Mining

Data mining addresses two basic tasks: verification and discovery. The verification task

seeks to verify user’s hypotheses. While the discovery task searches for unknown

4 | P a g e

knowledge hidden in the data. In general, discovery task can be further divided into two

categories, which are descriptive data mining and predicative data mining.

Descriptive data mining describes the data set in a summery manner and presents

interesting general properties of the data. Predictive data mining constructs one or more

models to be later used for predicting the behavior of future data sets.

There are a number of algorithmic techniques available for each data mining tasks, with

features that must be weighed against data characteristics and additional business

requirements. Among all the techniques, in this research, we are focusing on the

association rules mining technique, which is descriptive mining technique, with

transactional database system. This technique was formulated by [2] and is often referred

to as market-basket problem.

1.4. Introduction to Association Rule Mining

Association rules are one of the major techniques of data mining. Association rule mining

finding frequent patterns, associations, correlations, or causal structures among sets of

items or objects in transaction databases, relational databases, and other information

repositories [13]. The volume of data is increasing dramatically as the data generated by

day-to-day activities. Therefore, mining association rules from massive amount of data in

the database is interested for many industries which can help in many business decision

making processes, such as cross-marketing, Basket data analysis, and promotion

assortment. The techniques for discovering association rules from the data have

traditionally focused on identifying relationships between items telling some aspect of

human behavior, usually buying behavior for determining items that customers buy

together. All rules of this type describe a particular local pattern. The group of association

rules can be easily interpreted and communicated.

A lot of studies have been done in the area of association rules mining. First introduced

the association rules mining in [1, 2, 3]. Many studies have been conducted to address

various conceptual, implementation, and application issues relating to the association

rules mining task.

5 | P a g e

Researcher in application issues focuses on applying association rules to a variety of

application domains. For example: Relational Databases, Data Warehouses,

Transactional Databases, and Advanced Database Systems (Object-Relational, Spatial

and Temporal, Time-Series, Multimedia, Text, Heterogeneous, Legacy, Distributed, and

WWW) [26].

1.5. Basic Concepts

[2] Defined the problem of finding the association rules from the database. This section

introduces the basic concepts of frequent pattern mining for discovery of interesting

associations and correlations between itemsets in transactional and relational database.

Association rule mining can be defined formally as follows:

I= {i1, i2, i3, …, in} is a set of items, such as products like (computer, CD, printer,

papers, …and so on). Let DB be a set of database transactions where each transaction T is

a set of items such that T⊆I. Each transaction is associated with unique identifier,

transaction identifier (TID). Let X, Y be a set of items, an association rule has the form

��� , where X � � � �. � is called the antecedent and � is called the consequent of the

rule where, �, � is a set of items is called as an itemset or a pattern. Let
��
��� be the

number of rows (transactions) containing � itemset in the given database. The support of

an itemset � is defined as the fraction of all rows containing the itemset, i.e.
��
���/�.

The support of an association rule is the support of the union of X and Y, i.e.

��������� � �� � �� � ��/�

The confidence of an association rule is defined as the percentage of rows in D

containing itemset X that also contain itemset Y, i.e.

���
������ �� � � � � � � � / �� � ������������/����������

An itemset (or a pattern) is frequent if its support is equal to or more than a user specified

minimum support (a statement of generality of the discovered association rules).

Association rule mining is to identify all rules meeting user-specified constraints such as

minimum support and minimum confidence (a statement of predictive ability of the

6 | P a g e

discovered rules). One key step of association mining is frequent itemset (pattern)

mining, which is to mine all itemsets satisfying user specified minimum support. [10]

However a large number of these rules will be pruned after applying the support and

confidence thresholds. Therefore the previous computations will be wasted. To avoid this

problem and to improve the performance of the rule discovery algorithm, mining

association rules may be decomposed into two phases:

1. Discover the large itemsets, i.e., the sets of items that have transaction support

above a predetermined minimum threshold known as frequent Itemsets.

2. Use the large itemsets to generate the association rules for the database that have

confidence above a predetermined minimum threshold.

The overall performance of mining association rules is determined primarily by the first

step. The second step is easy. After the large itemsets are identified, the corresponding

association rules can be derived in straightforward manner. Our main consideration of the

thesis is First step i.e. to find the extraction of frequent itemsets.

1.6. Searching Frequent Itemsets

Frequent patterns, such as frequent itemsets, substructures, sequences term-sets, phrase-

sets, and sub graphs, generally exist in real-world databases. Identifying frequent itemsets

is one of the most important issues faced by the knowledge discovery and data mining

community. Frequent itemset mining plays an important role in several data mining fields

as association rules [1] warehousing [25], correlations, clustering of high-dimensional

biological data, and classification [13]. Given a data set d that contains k items, the

number of itemsets that could be generated is 2k - 1, excluding the empty set[1]. In order

to searching the frequent itemsets, the support of each itemset must be computed by

scanning each transaction in the dataset. A brute force approach for doing this will be

computationally expensive due to the exponential number of itemsets whose support

counts must be determined. There have been a lot of excellent algorithms developed for

extracting frequent itemsets in very large databases. The efficiency of algorithm is linked

to the size of the database which is amenable to be treated. There are two typical

7 | P a g e

strategies adopted by these algorithms: the first is an effective pruning strategy to reduce

the combinatorial search space of candidate itemsets (Apriori techniques). The second

strategy is to use a compressed data representation to facilitate in-core processing of the

itemsets (FP-tree techniques).

1.7. Why Mining Frequent Itemsets for Association Rules

Database has been used in business management, government administration, scientific

and engineering data management and many other important applications. The newly

extracted information or knowledge may be applied to information management, query

processing, process control, decision making and many other useful applications. With

the explosive growth of data, mining information and knowledge from large databases

has become one of the major challenges for data management and mining community.

The frequent itemset mining is motivated by problems such as market basket analysis [3].

A tuple in a market basket database is a set of items purchased by customer in a

transaction. An association rule mined from market basket database states that if some

items are purchased in transaction, then it is likely that some other items are purchased as

well. Finding all such rules is valuable for guiding future sales promotions and store

layout.

The problem of mining frequent itemsets are essentially, to discover all rules, from the

given transactional database D that have support greater than or equal to the user

specified minimum support.

1.8. Methodology

This thesis is conducted through: a review of the current status and the relevant work in

the area of data mining in general and in the area of association rules in particular;

analyze these works in the area of mining frequent itemsets; propose the new scheme for

extracting the frequent itemsets based on hybrid approach of maximal Apriori and FP-

tree algorithm that has high efficiency in term of the time and the space; validate its

efficiency and seek avenues for further research.

8 | P a g e

CHAPTER 2

2. Literature Review

As frequent data itemsets mining are very important in mining the Association rules.

Therefore there are various techniques are proposed for generating frequent itemsets so

that association rules are mined efficiently. The approaches of generating frequent

itemsets are divided into basic three techniques.

• Horizontal layout based data mining techniques

o Apriori algorithm

o DHP algorithm

o Partition

o Sample

o A new improved Apriori algorithm

• Vertical layout based data mining techniques

o Eclat algorithm

• Projected database based data mining techniques

o FP-tree algorithm

o H-mine algorithm

There are dozens of algorithms used to mine frequent itemsets. Some of them, very well

known, started a whole new era in data mining. They made the concept of mining

frequent itemsets and association rules possible. Others are variations that bring

improvements mainly in terms of processing time. Some of the most important

algorithms briefly explained in this report. The algorithms vary mainly in how the

candidate itemsets are generated and how the supports for the candidate itemsets are

counted.

This section will introduce some representative algorithms of mining association rules

and frequent itemsets.

9 | P a g e

General steps:

1. In the first pass, the support of each individual item is counted, and the large ones

are determined

2. In each subsequent pass, the large itemsets determined in the previous pass is used

to generate new itemsets called candidate itemsets.

3. The support of each candidate itemset is counted, and the large ones are

determined.

4. This process continues until no new large itemsets are found.

2.1. Algorithms for Mining from Horizontal Layout Data base

Definition: In this each row of database represents a transaction which has a transaction

identifier (TID), followed by a set of items. One example of horizontal layout dataset is

shown in (Table 2-1)

Table 2-1: Horizontal Layout Based Database

2.1.1. Apriori Algorithm

The first algorithm for mining all frequent itemsets and strong association rules was the

AIS algorithm by [3]. Shortly after that, the algorithm was improved and renamed

Apriori. Apriori algorithm is, the most classical and important algorithm for mining

frequent itemsets. Apriori is used to find all frequent itemsets in a given database DB.

The key idea of Apriori algorithm is to make multiple passes over the database. It

TID ITEMS

T1 I1, I2, I3, I4, I5, I6

T2 I1, I2, I4, I7

T3 I1, I2, I4, I5, I6

T4 I1, I2, I3

T5 I3, I5

10 | P a g e

employs an iterative approach known as a breadth-first search (level-wise search) through

the search space, where k-itemsets are used to explore (k+1)-itemsets.

The working of Apriori algorithm is fairly depends upon the Apriori property which

states that” All nonempty subsets of a frequent itemsets must be frequent” [2]. It also

described the anti monotonic property which says if the system cannot pass the minimum

support test, all its supersets will fail to pass the test [2, 3]. Therefore if the one set is

infrequent then all its supersets are also frequent and vice versa. This property is used to

prune the infrequent candidate elements. In the beginning, the set of frequent 1-itemsets

is found. The set of that contains one item, which satisfy the support threshold, is denoted

by L . In each subsequent pass, we begin with a seed set of itemsets found to be large in

the previous pass. This seed set is used for generating new potentially large itemsets,

called candidate itemsets, and count the actual support for these candidate itemsets during

the pass over the data. At the end of the pass, we determine which of the candidate

itemsets are actually large (frequent), and they become the seed for the next pass.

Therefore, L is used to find L!, the set of frequent 2-itemsets, which is used to find L ,

and so on, until no more frequent k-itemsets can be found. The feature first invented by

[2] in Apriori algorithm is used by the many algorithms for frequent pattern generation.

The basic steps to mine the frequent elements are as follows [3]:

• Generate and test: In this first find the 1-itemset frequent elements L by scanning

the database and removing all those elements from C which cannot satisfy the

minimum support criteria.

• Join step: To attain the next level elements C# join the previous frequent elements

by self join i.e. L#$ % L#$ known as Cartesian product of L#$. i.e. This step

generates new candidate k-itemsets based on joining L#$ with itself which is

found in the previous iteration. Let C# denote candidate k-itemset and L# be the

frequent k-itemset.

• Prune step: C# is the superset of L# so members of C# may or may not be frequent

but all K ' 1 frequent itemsets are included in C# thus prunes the C# to fnd K

frequent itemsets with the help of Apriori property. i.e. This step eliminates some

of the candidate k-itemsets using the Apriori property A scan of the database to

11 | P a g e

determine the count of each candidate in C# would result in the determination of

L# (i.e., all candidates having a count no less than the minimum support count are

frequent by definition, and therefore belong to L#). C#, however, can be huge, and

so this could involve grave computation. To shrink the size of C#, the Apriori

property is used as follows. Any (k-1)-itemset that is not frequent cannot be a

subset of a frequent k-itemset. Hence, if any (k-1)-subset of candidate k-itemset is

not in L#$ then the candidate cannot be frequent either and so can be removed

from C#. Step 2 and 3 is repeated until no new candidate set is generated.

To illustrate this, suppose n frequent 1-itemsets and minimum support is 1 then according

to Apriori will generate n! * �n 2�candidate 2 ' itemset �n 3�candidate 3 ' itemset

and so on. The total number of candidates generated is greater than ∑ �n k�7
#8 Therefore

suppose there are 1000 elements then 1499500 candidate are produced in 2 itemset

frequent and 166167000 are produced in 3-itemset frequent [11].

It is no doubt that Apriori algorithm successfully finds the frequent elements from the

database. But as the dimensionality of the database increase with the number of items

then:

• More search space is needed and I/O cost will increase.

• Number of database scan is increased thus candidate generation will increase

results in increase in computational cost.

Therefore many variations have been takes place in the Apriori algorithm to minimize the

above limitations arises due to increase in size of database. These subsequently proposed

algorithms adopt similar database scan level by level as in Apriori algorithm, while the

methods of candidate generation and pruning, support counting and candidate

representation may differ. The algorithms improve the Apriori algorithms by:

• Reduce passes of transaction database scans

• Shrink number of candidates

• Facilitate support counting of candidates

These algorithms are as follows:

12 | P a g e

2.1.2. Direct Hashing and Pruning (DHP):

It is absorbed that reducing the candidate items from the database is one of the important

task for increasing the efficiency. Thus a DHP technique was proposed [7] to reduce the

number of candidates in the early passes C# for k 9 1 and thus the size of database. In

this method, support is counted by mapping the items from the candidate list into the

buckets which is divided according to support known as Hash table structure. As the new

itemset is encountered if item exist earlier then increase the bucket count else insert into

new bucket. Thus in the end the bucket whose support count is less the minimum support

is removed from the candidate set.

In this way it reduce the generation of candidate sets in the earlier stages but as the level

increase the size of bucket also increase thus difficult to manage hash table as well

candidate set.

2.1.3. Partitioning Algorithm:

Partitioning algorithm [1] is based to find the frequent elements on the basis partitioning

of database in n parts. It overcomes the memory problem for large database which do not

fit into main memory because small parts of database easily fit into main memory. This

algorithm divides into two passes,

1 In the first pass whole database is divided into n number of parts.

2 Each partitioned database is loaded into main memory one by one and local frequent

elements are found.

3 Combine the all locally frequent elements and make it globally candidate set.

4 Find the globally frequent elements from this candidate set.

It should be noted that if the minimum support for transactions in whole database is

min_sup then the minimum support for partitioned transactions is min-sup number of

transaction in that partition.

A local frequent itemset may or may not be frequent with respect to the entire database

thus any itemset which is potentially frequent must include in any one of the frequent

partition.

13 | P a g e

 Figure 2-1: Mining Frequent itemsets using Partition algorithm [13]

As this algorithm able to reduce the database scan for generating frequent itemsets but in

some cases, the time needed to compute the frequency of candidate generates in each

partitions is greater than the database scan thus results in increased computational cost.

2.1.4. Sampling Algorithm:

This algorithm [10] is used to overcome the limitation of I/O overhead by not considering

the whole database for checking the frequency. It is just based in the idea to pick a

random sample of itemset R from the database instead of whole database D. The sample

is picked in such a way that whole sample is accommodated in the main memory. In this

way we try to find the frequent elements for the sample only and there is chance to miss

the global frequent elements in that sample therefore lower threshold support is used

instead of actual minimum support to find the frequent elements local to sample. In the

best case only one pass is needed to find all frequent elements if all the elements included

in sample and if elements missed in sample then second pass are needed to find the

itemsets missed in first pass or in sample [13].

Thus this approach is beneficial if efficiency is more important than the accuracy because

this approach gives the result in very less scan or time and overcome the limitation of

memory consumption arises due to generation of large amount of datasets but results are

not as much accurate.

14 | P a g e

2.1.5. Dynamic Itemset Counting (DIC):

This algorithm [4] also used to reduce the number of database scan. It is based upon the

downward disclosure property in which adds the candidate itemsets at different point of

time during the scan. In this dynamic blocks are formed from the database marked by

start points and unlike the previous techniques of Apriori it dynamically changes the sets

of candidates during the database scan. Unlike the Apriori it cannot start the next level

scan at the end of first level scan, it start the scan by starting label attached to each

dynamic partition of candidate sets.

In this way it reduce the database scan for finding the frequent itemsets by just adding

the new candidate at any point of time during the run time. But it generates the large

number of candidates and computing their frequencies are the bottleneck of performance

while the database scans only take a small part of runtime.

Assumption [12, 13]: The performance of all the above algorithms relies on an implicit

assumption that the database is homogenous and thus they will not generate too many

extra candidates than Apriori algorithm does. For example, if all partitions in Partition

algorithm are not homogenous and nearly completely different sets of local frequent

itemsets are generated from them, the performance cannot be good.

2.1.6. Improved Apriori algorithm

It was absorbed in [15] [13] that the improved algorithm is based on the combination of

forward scan and reverse scan of a given database. If certain conditions are satisfied, the

improved algorithm can greatly reduce the iteration, scanning times required for the

discovery of candidate itemsets.

Suppose the itemset is frequent, all of its nonempty subsets are frequent, contradictory to

the given condition that one nonempty subset is not frequent, the itemset is not frequent.

Based on this thought, proposes an improved method by combining forward and reverse

thinking: find the maximum frequent itemsets from the maximum itemset firstly, then,

get all the nonempty subsets of the frequent itemset. We know they are frequent on the

15 | P a g e

basis of Apriori's property. Secondly, scan the database once more from the lowest

itemset and count the frequent. During this scanning, if one item is found out being

excluded in the frequent set, it will be processed to judge whether the itemsets associated

with it is frequent, if they are frequent, they will be added in the barrel-structure (include

frequent itemsets).we get all the frequent itemsets. The key of this algorithm is to find the

maximum frequent itemset fast.

Advantage:

• According to [15] The consumed time of Apriori and the improved algorithm is:

Table 2-2: Comparison of aprori and improved Apriori [16]

• Algorithm • Time
• Apriori • 23 min
• Improved Algorithm • 10 min

• This algorithm gets the maximum frequent itemsets directly, then, get their

subsets and compare them with the items in the database. Thus, it saves much

time and the storing space.

Disadvantages:

• It will lose mean if the maximum frequent cannot be found fast.

• It cannot fit the situation that if there are still many items not included in the

frequent set consisted of the maximum frequent itemsets and all of their nonempty

subsets.

2.2 Algorithms for Mining from Vertical Layout Databa se

In vertical layout data set, each column corresponds to an item, followed by a TID list,

which is the list of rows that the item appears. An example of vertical layout database set

is as shown in diagram for the table 2-2.

16 | P a g e

Table 2-3: Vertical layout based database

ITEM TID_list

I1 T1, T2, T3, T4

I2 T1, T2, T3, T4

I3 T1, T4, T5

I4 T1, T2, T3

I5 T1, T3, T5

I6 T1, T3

I7 T2

2.2.1 Eclat algorithm

It is a set intersection, depth first search algorithm [9], unlike the Apriori. It uses vertical

layout database and each item use intersection based approach for finding the support. In

this way, the support of an itemset P can be easily computed by simply intersecting of

any two subsets Q, R ⊆ P, such that P � Q U R.

In this type of algorithm, for each frequent itemset i new database is created Di. This can

be done by finding j which is frequent corresponding to i together as a set then j is also

added to the created database i.e. each frequent item is added to the output set. It uses the

join step like the Apriori only for generating the candidate sets but as the items are

arranged in ascending order of their support thus less amount of intersection is needed

between the sets. It generates the larger amount of candidates then Apriori because it uses

only two sets at a time for intersection [9]. There is reordering step takes place at each

recursion point for reducing the candidate itemsets.

In this way by using this algorithm there is no need to find the support of itemsets whose

count is greater than 1because Tid-set for each item carry the complete information for

the corresponding support. When the database is very large and the itemsets in the

database corresponding also very large then it is feasible to handle the Tid list thus it

produce good results but for small databases its performance is not up to mark.

17 | P a g e

2.3 Algorithms for Mining from Projected Layout Based Database

The concept of projected database was proposed and applied to mine the frequent

itemsets efficiently because early approaches are able to mine the frequent itemsets but

use large amount of memory. This type of database uses divide and conquer strategy to

mine itemsets therefore it counts the support more efficiently then Apriori based

algorithms. Tree projected layout based approaches use tree structure to store and mines

the itemsets. The projected based layout contains the record id separated by column then

record.

Tree projection is defined as the lexicographic tree with nodes contains the frequent

itemsets [14]. The lexicographic trees usually follow the ascending order for saving the

frequent itemsets according to the support for better mining.

Tree Projection algorithms based upon two kinds of ordering breadth-first and depth-first.

For breath-first order, nodes are constructed level by level in the lexicographic tree for

frequent itemsets [11]. In order to compute frequencies of nodes (corresponding frequent

itemsets) at k level, tree projection algorithm maintained matrices at nodes of the k-2

level and one database scan was required for counting support [5]. Every transaction is

projected by node sequentially. The projected set of transaction for reduced set is used to

evaluate frequency.

For depth-first order, database is projected along the lexicographic tree and also requires

fitting into main memory [13]. The advantage is that the projected database will become

smaller along the branch of the lexicographic tree while the breadth-first needs to project

the database from the scratch at each level.

The disadvantage of depth-first is obvious that it needs to load database and projected

databases in memory. The breadth-first method will also meet the memory bottleneck

when the number of frequent items is large and the matrix is too large to fit in memory

[5].

18 | P a g e

2.3.1 FP-Growth Algorithm

FP-tree algorithm [5, 6] is based upon the recursively divide and conquers strategy; first

the set of frequent 1-itemset and their counts is discovered. With start from each frequent

pattern, construct the conditional pattern base, then its conditional FP-tree is constructed

(which is a prefix tree.). Until the resulting FP-tree is empty, or contains only one single

path. (Single path will generate all the combinations of its sub-paths, each of which is a

frequent pattern). The items in each transaction are processed in L order. (i.e. items in the

set were sorted based on their frequencies in the descending order to form a list).

The detail step is as follows: [6]

FP-Growth Method: Construction of FP-tree

1 Create root of the tree as a “null”.

2 After scanning the database D for finding the 1-itemset then process the each

transaction in decreasing order of their frequency.

3 A new branch is created for each transaction with the corresponding support.

4 If same node is encountered in another transaction, just increment the support count

by 1 of the common node.

5 Each item points to the occurrence in the tree using the chain of node-link by

maintaining the header table.

After above process mining of the FP-tree will be done by Creating Conditional (sub)

pattern bases:

1 Start from node constructs its conditional pattern base.

2 Then, Construct its conditional FP-tree & perform mining on such a tree.

3 Join the suffix patterns with a frequent pattern generated from a conditional GP-tree

for achieving FP-growth.

4 The union of all frequent patterns found by above step gives the required frequent

itemset.

In this way frequent patterns are mined from the database using FP-tree.

19 | P a g e

Definition: Conditional pattern base [6]

A “subdatabase” which consists of the set of prefix paths in the FP-tree co-occuring with

suffix pattern.eg for an itemset X, the set of prefix paths of X forms the conditional

pattern base of X which co-occurs with X.

Definition: Conditional FP-tree [6]

The FP-tree built for the conditional pattern base X is called conditional FP-tree.

Let sample database in table 2-3 and corresponding the support count in table 2-4 is:

 Table 2-4 : Sample database

Tid Items

T1 I1, I2, I3, I4, I5

T2 I5, I4, I6, I7, I3

T3 I4, I3, I7, I1, I8

T4 I4, I7, I9, I1, I10

T5 I1, I5, I10, I11, I12

T6 I1, I4, I13, I14, I2

T7 I1, I4, I6, I15, I2

T8 I16, I7, I9, I17, I5

T9 I1, I9, I8, I10, I11

T10 I4, I9, I12, I2, I14

T11 I1, I3, I5, I6, I15

T12 I3, I7, I5, I17, I16

T13 I8, I3, I4, I2, I11

T14 I4, I9, I13, I12, I18

T15 I5, I3, I7, I9, I15

T16 I18, I7, I5, I1, I3

T17 I1, I17, I7, I9, I4

T18 I4, I3, I16, I5, I1

20 | P a g e

Table 2-5: Frequency of Sample Database

Suppose minimum support is 5. Thus delete all infrequent items whose support is less

them 5.After all the remaining transactions arranged in descending order of their

frequency. Create a FP- tree. For Each Transaction create a node of an items whose

support is greater than minimum support, as same node encounter just increment the

support count by 1.

Figure 2-2: FP-Tree Constructed For Sample Database

Item Support Item Support

I1 11 I10 3

I2 4 I11 3

I3 9 I12 3

I4 10 I13 2

I5 10 I14 2

I6 3 I15 3

I7 8 I16 3

I8 3 I17 3

I9 7 I18 3

21 | P a g e

In this way after constructing the FP-Tree one can easily mine the frequent itemsets by

constructing the conditional pattern base

2.3.2 COFI-Tree Algorithm

COFI tree [19] generation is depends upon the FP-tree however the only difference is that

in COFI tree the links in FP-tree is bidirectional that allow bottom up scanning as well

[5,20]. The relatively small tree for each frequent item in the header table of FP-tree is

built known as COFI trees [20]. Then after pruning mine the each small tree

independently which minimise the candidacy generation and no need to build he

conditional sub-trees recursively. At any time only one COFI tree is present in the main

memory thus in this way it overcome the limitations of classic FP-tree which can not fit

into main memory and has memory problem.

COFI tree is based upon the new anti-monotone property called global frequent/local non

frequent property [20]. It states that all the nonempty subsets of frequent patterns with

respect to the item X of an X-COFI tree must also be frequent with respect to item X. In

this approach trying to find the entire frequent item set with respect to the one frequent

item sets. If the itemset participate in making the COFI tree then it means that item set is

globally frequent but this doesn’t mean that item set is locally frequent with respect to the

particular item.

Steps: Create a COFI-Tree

1 Take FP-tree as an input with bidirectional link and threshold value.

2 Consider the least frequent item from the header table let it be X.

3 Compute the frequency that share the path of item X and remove all non frequent

items for the frequent list of item X.

4 Create COFI tree for X known as X-COFI tree with support-count and

participation=0

5 If items on Y which is locally frequent with respect to X form a new prefix path of

X-COFI tree

22 | P a g e

6 DO, Set support count= support of X and participation count =0 for all nodes in a

path.

7 Else adjust the frequency count and pointers of header list until all the nodes are not

visited.

8 Repeat step 2 goes on until all frequent items not found.

9 Mine the X-COFI tree.

Support count and the participation count are used to find candidate frequent pattern and

stored in the temporary list, which will be more clear after example.

Let the above FP-tree in figure 2-3 is the input for making COFI tree. Consider the links

between the nodes are bidirectional. Then according to algorithm the COFI tree forms are

first consider the itemset I9 as is least frequent item set, when scan the FP-tree the first

branch is (I9,I1) has frequency 1, therefore frequency of the branch is frequency of the

test item, which is I9. Now count the frequency of each item in a path with respect to I9.

It is found that (I7, I3, I4, I5, I1) occur 4, 2, 4, 2, 3 times respectively thus according to

anti-monotone property I9 will never appear in any frequent pattern expect itself. In the

same way find the global frequent items for (I7, I3, I4, I5) which are also locally

frequent, like for I7 two items I3 and I5 globally frequent item are also found locally

frequent with frequency 5and 6 respectively thus a branch is created for each such items

with parent I7. If multiple items share same prefix they are merged into one branch and

counter is adjusted. COFI trees for items are follows:

Figure 2-3: I9 COFI Tree

23 | P a g e

Figure 2-4: I7 COFI Tree

Similarly COFI tree is built for I3, I4, and I5. First after the globally frequent, find the

itemsets which are also locally frequent , than find the support counter and make

participation counter always equal to ‘0’. We are representing only for I7 in above

example.

Once the COFI trees have built then we have to mine the frequent items from these COFI

trees with the help of following procedure:

Steps MINE X-COFI Tree

10 For node X select the item from the most frequent to least frequent with its chain

11 Until there are no node left, select all nodes from node X to root save in D list and in

list F save the frequency count and participation count.

12 Generate all non discarded patterns Z from items D.

13 Add the list with frequency =F whose patterns not exist in X candidate list, else

increment the frequency by F.

14 Increment the participation value by F for all items in D.

15 Select the next node and repeat step 2 until there is no node left.

16 Remove all non frequent items from X-COFI tree.

24 | P a g e

The COFI trees of all frequent items are mined independently one by one [8], first tree is

discarded before the next COFI tree is come into picture for mining. Based on the support

count and participation count frequent patterns are identified and non frequent items are

discarded in the end of processing.

Let’s take an example for I7 COFI-Tree

As mining process start from the most local frequent item I5 and as from the figure 3, I5

exist in two branches I5, I3, I7 and I5, I7. Therefore

Figure 2-5: Mining E COFI tree for branch (I7, I3, I5)

As the frequency for each branch is equal to frequency of first item minus participation

count of that node, Thus I5 has frequency 5 and participation count is 0 therefore first

frequent set is found i.e. (I7, I3, I5:5).

Participation value is incremented by 1 for branch (I7, I3, I5) increment by 5 same as the

frequency of I5. the pattern I7,I5 generates a pattern 6 and 1 which is already exist

therefore increment the previous participation for I7, I5 by 1.therefore for I7 is become

for I5 it become 1 for branch I7,I5.

Figure 2-6: Mining I7 COFI tree for branch (I7, I5)

25 | P a g e

Similarly mine for sub branch (I7, I3) and it is found that frequent patterns (I7, I3: 5), (I7,

I5: 6), (I7, I3, I5: 5) for COFI tree I7. Similarly main the frequent patterns for I3, I4, and

I5 itemsets.

In this way COFI tree mine the frequent item sets very easily then the FP-growth

algorithm with the help of FP-tree [6]. It saves to memory space as well as time in

comparison to the FP-growth algorithm. It mines the large transactional database with

minimal usage of memory. It does not produce any conditional pattern base. Only simple

traversal is needed in the mining process to find all the frequent item sets. It is based

upon the locally and globally frequent item sets thus easily remove the frequent item sets

in the early stages and don’t allow any locally non frequent elements to takes part in next

stage.

2.3.3 CT-PRO Algorithm

CT-PRO is also the variation of classic FP-tree algorithm [21]. It is based upon the

compact tree structure [21, 22]. It traverses the tree in bottom up fashion. It is based upon

the non-recursive based technique. Compress tree structure is also the prefix tree in which

all the items are stored in the descending order of the frequency with the field index,

frequency, pointer, item-id [22]. In this all the items if the databases after finding the

frequency of items and items whose frequency is greater than minimum support are

mapped into the index forms according to the occurrence of items in the transaction. Root

of the tree is always at index ‘0’ with maximum frequency elements. The CT-PRO uses

the compact data structure known as CFP-tree i e. compact frequent pattern tree so that

all the items of the transactions can be represented in the main memory [21, 22, 23].

The CT-PRO algorithm consists following basic steps [21]:

1 In the first step all the elements from the transaction are found whose frequency is

greater than the minimum user defined support.

2 Mapping the elements according to the index value.

3 Construct the CFP-tree which is known as globally CFP-tree.

4 Mine the Global CFP-tree by making local CFP-tree for each particular index.

26 | P a g e

In this way by following the above steps can easily find the frequent item sets. The

frequency of item sets greater then minimum support which defined as ‘5’ for the sample

database present in Table 1. After the mapping the Global Tree formed from the

transactions are follows:

Figure 2-7: CFP-Tree for Table 2-3

Note: No transaction starts from Item I3, I7, and I9 therefore no pointer is there.

Steps for Making Global CFP-tree

1 Take Database and threshold value as input.

2 Find the frequent items from database and sort in descending order in new list.

3 Then map the frequent items of the transaction in the index form, and sort in

ascending order of their transaction Id (Tid).

4 Make maximum frequency item is the root node of the tree and makes it for index 1;

insert all sub children in the tree.

5 For new index starting items, adjust pointer and build sub trees and give incremented

index value or level as in above figure 2-3.

6 CFP-Tree has been built. Mine the CFP-tree index wise as projections.

27 | P a g e

After the global CFP-tree, the local CFP-Tree is build for each index item separately. It

starts from the least frequency element.

The local CFP-Tree for the index 5 i.e. for the item I7 is found by first counting the other

indexes that occur with the index 5. The other indexes are: 1, 3, and 4 which occur 4, 6

and 5 time respectively. As minimum support is 5 thus index 1 is pruned from local tree.

The corresponding items are I1, I5 and I3 Item 1 is not locally frequent thus eliminated.

Now construct the local CFP-tree projection for item I7 is as follows:

Figure 2-8: Frequent itemsets in Projection 5

The frequent items are that can be easily found by the above projection for index 5 is as

follows:

 (I7, I3, I5:5), (I7, I5: 6), (I7, I3: 5)

Similarly the frequent patterns are easily found for other indexes.

Algorithm: Mine Global CFP-Tree

1 Take Global CFP-tree as input.

2 Start from least frequent item index, check all the indexes come together in the global

tree with the desired index.

3 Count support of all the indexes find on above step.

4 Prune all those indexes whose support is less then minimum support means those are

not locally frequent.

28 | P a g e

5 Construct the local CFP-tree by those remaining indexes by again mapping along

with the support.

6 Join the links between the items as same the linkage in the global CFP-tree in

between only that item’s index i.e. parent should be parent and child will be child of

particular existing projection.

7 The new supports of nodes are the support of frequent items of that particular

projection.

8 Repeat the process until no index is left.

In this way CFP-tree Provide facility to easily mine the frequent items with the help of

projections which prune the not frequent items locally and utilize the memory space

efficiently by mining projections one by one. For large database the items can also easily

fit into main memory.

2.3.4 H-mine Algorithm

H-mine [8] algorithm is the improvement over FP-tree algorithm as in H-mine projected

database is created using in-memory pointers. H-mine uses an H-struct new data structure

for mining purpose known as hyperlinked structure. It is used upon the dynamic

adjustment of pointers which helps to maintain the processed projected tree in main

memory therefore H-mine proposed for frequent pattern data mining for data sets that can

fit into main memory. It has polynomial space complexity therefore more space efficient

then FP-growth and also designed for fast mining purpose. For the large databases, first

in partition the database then mine each partition in main memory using H-struct then

consolidating global frequent pattern [8]. If the database is dense then it integrates with

FP-Growth dynamically by detecting the swapping condition and constructing the FP-

tree.

This working ensures that it is scalable for both large and medium size databases and for

both sparse and dense datasets [14]. The advantage of using in-memory pointers is that

their projected database does not need any memory the memory required only for the set

of in-memory pointers.

29 | P a g e

Chapter 3

3. Problem Formulation

The problem of mining frequent itemsets arises in the large transactional databases when

there is need to find the association rules among the transactional data for the growth of

business. Many different algorithms has been proposed and developed to increase the

efficiency of mining frequent itemsets including (Horizontal layout based algorithms,

Vertical Layout Based algorithms [1, 2, 4, 8, 9, 10], Projected layout based algorithms

[23] and Hybrid algorithms [16, 18]. These different algorithms have strengths and

weakness in different type of datasets. As a measure of performance mainly the average

number of operations or the average execution times of these algorithms have been

investigated and compared.

3.1 Motivation

Studies of Frequent Itemset (or pattern) Mining is acknowledged in the data mining field

because of its broad applications in mining association rules, correlations, and graph

pattern constraint based on frequent patterns, sequential patterns, and many other data

mining tasks. Efficient algorithms for mining frequent itemsets are crucial for mining

association rules as well as for many other data mining tasks. The major challenge found

in frequent pattern mining is a large number of result patterns. As the minimum threshold

becomes lower, an exponentially large number of itemsets are generated. Therefore,

pruning unimportant patterns can be done effectively in mining process and that becomes

one of the main topics in frequent pattern mining. Consequently, the main aim is to

optimize the process of finding patterns which should be efficient, scalable and can detect

the important patterns which can be used in various ways.

3.2 Gap Analysis

• All the algorithms produce frequent itemsets on the basis of minimum support.

30 | P a g e

• Apriori algorithm is quite successful for market based analysis in which

transactions are large but frequent items generated is small in number.

• The Apriori variations (DHP, DIC, Partition, and Sample) algorithms among

them DHP tries to reduce candidate itemsets and others try to reduce database

scan.

• DHP works well at early stages and performance deteriorates in later stages and

also results in I/O overhead.

• For DIC, Partition, sample algorithm performs worse where database scan

required is less then generating candidates.

• Vertical Layout based algorithms claims to be faster than Apriori but require

larger memory space then horizontal layout based because they needs to load

candidate, database and TID list in main memory.

• For projected layout based algorithms include FP-Tree and H-mine, performs

better then all discussed above because of no generation of candidate sets but

the pointes needed to store in memory require large memory space.

• FP-Tree variations include COFI-Tree and CT-PRO performs better than

classical FP-tree as COFI-tree performs better in dense datasets but with low

support its performance degrades for sparse datasets and for CT-PRO algorithm

performs better for sparse as well for dense data sets but difficult to manage the

compress structure.

Therefore these algorithms are not sufficient for mining the frequent itemsets for large

transactional database.

3.3 Problem statement

Let A � B� , �!, �C. . . . , �DE be a set of items and � is considered the dimensionality of the

problem. Let D be the task relevant database which consists of transactions where each

transaction T is set of items such that F G A. A transaction T is said to contain itemset X,

31 | P a g e

which is called a pattern, i.e. � G F G A. A transaction is a pair which contains unique

identifier Tid and set of items [3].

A transaction T is said to be maximal frequent if its pattern length is greater than or equal

to all other existing transactional patterns and also count of occurrence (support) in

database is greater than or equal to specified minimum support threshold [15].

An itemset X is said to be frequent if its support is greater than or equal to given

minimum support threshold i.e. count(X)>minsup [2].

Transactional database D and minimum support threshold is given, therefore the problem

is to find the complete set of frequent itemsets from Transactional type of databases to

increase the business, so that relation between customers behaviour can be found between

various items.

3.4 The Proposed Objectives

The problems or the limitations defined in the above section of this chapter are proposed

to be solved by:

1. To observe the effect of various existing algorithms for mining frequent itemsets

on various datasets.

2. To propose a new scheme for mining the frequent itemsets for retailer

transactional database i.e. for the above problem.

3. To validate the new scheme on dataset.

3.5 Methodology Used

To implement the proposed solution of the problem that is being taken care of in this

thesis work, the following methodology is used:

1. To analyze the various existing techniques and find their strengths and weakness

by the literature survey.

2. To compare the existing techniques.

32 | P a g e

3. Build a program for our desired problem by using maximal Apriori (Improved

Apriori technique) and FP-tree structure.

4. Validate the program by desired input.

3.6 Importance

Mining frequent itemsets is the very crucial task to find the association rules between the

various items. In the market industry, everyone wants to enhance the business thus it is

very important to find out the items which are more frequently sale or purchase. Once the

selling or purchasing trend of the customer is known then one can easily provide the good

services to customer with result in enhancing the business. As it is very common in retail

selling database that two or more items sell or purchase together many times [17]

therefore database contains same set of items many times, by using this concept aim to

overcome the limitation of above existing approaches [2, 6] and propose a novel

approach to mine frequent itemsets from a large transactional database without the

candidate generation with the help of existing techniques, Because till now no single

technique using this property to overcome the limitation is so much efficient.

33 | P a g e

Chapter 4

4. Implementation of Novel Approach

This chapter includes detail of implementation of the new approach to mine the frequent

itemsets with example. The main objective of the research is to develop and propose a

new scheme for mining the association rules out of transactional data set. The proposed

scheme is based on two approaches: Improved Apriori approach and FP-Growth

approach. The proposed scheme is more efficient than Apriori algorithm and FP-growth

algorithm, as it is based on two of the most efficient approaches. To achieve the research

objective successfully, a series of sequence progresses and analysis steps have been

adopted. Figure 4-1 depicts the methodologies to extract frequent itemsets from the

transactional data set using the new scheme [25].

Figure 4-1: Methodology used to mine frequent itemsets

Business Understanding

Data Assembly

Data Processing

Model Building

 New Approach

Frequent Item Sets

34 | P a g e

4.1 Business Understanding

The concern of this stage is to identify the problem area and describe the problem in

general terms. In another word, the enterprise decision makers need to formulate goals

that the data mining process is expected to achieve. Then the first step in the

methodology is to clearly defined business problem:

4.1.1 Market Based analysis

The retail industry is a most important application area for data mining, since it collects

enormous amounts of data on sales, customer shopping history, service, and goods

transportation, consumption. Progress in bar code technology has made it possible for

retail organizations to collect and store massive amounts of sales data, referred as the

basket data. Such market basket databases consist of a large number of transaction

records. Each record lists all items bought by a customer on a single purchase trip. Using

market basket analysis is a key factor of success in the competition of supermarket

retailers. Market basket analysis provides manager with knowledge of customers and

their purchasing behavior which brings potentially huge added value for their business.

Recent marketing research has suggested that in-store environmental stimuli, such as

shelf-space allocation, and product display, have a great influence upon consumer buying

behavior and may induce substantial demand.

4.1.2 Objective of Market Based Analysis

One possibility to do so is to make the store layout construction and the promotional

campaign through the introduction of market basket analysis. Market basket analysis has

the objective of individuating products, or groups of products, that tend to occur together

(are associated) in buying transactions (baskets). The knowledge obtained from a market

basket analysis can be very valuable, and it can be employed by a supermarket to

redesign the layout of the store to increase the profit through placing interdependencies

products near to each other and to satisfy customers through saving time and personalized

the store layout. Another strategy, Items that are associated can be put near to each other;

35 | P a g e

it increases the sales of other items due to complementarily effects. If the customers see

them, it has higher probability that they will purchase them together.

4.2 Data Assembling

Data set: Data Assembly also include collecting of data, in this thesis for testing purpose

the data is collected from the Fimi website. The data is challenging due to the number of

characteristics which are the number of the records, and the sparseness of the data (each

records contains only small portion of items). In our experiments we chose different

dataset with different properties, to prove the efficiency of the algorithms, Table 4-1

shows the datasets and the characteristics from the fimi website.

Table 4-1: The Datasets

Data set #Items Avg. Length #Trans Type Size

T10I4D100K 1000 10 100, 000 Sparse 3. 93 MB

Mushroom 119 23 8, 124 Dense 557 KB

4.3 Existing Techniques Comparisons

There are several algorithms for mining the frequent itemsets. Those algorithms can be

classified and Apriori-like algorithms (candidate generate-and-test strategy) and FP-

growth-like algorithms (divide-and-conquer strategy). In this research we are focusing on

FP-growth-like algorithms and improved Apriori algorithm to find the frequent itemsets.

Many variations of the FP-growth algorithm have been proposed which focus on

improving the efficiency of the original algorithm. Some algorithms are best suited for

sparse dataset and some are best suited for dense datasets. Some shows the outstanding

results on specific type of database. Apriori based algoritms performs well for dense

datasets and FP- Tree based algorithms performs well for sparse datasets among them

there are many variations therefore to find the best algorithm for database we perform

some comparisons:

36 | P a g e

4.3.1 Comparison of Classical Algorithms:

Table 4-2: Comparison of classical algorithms

37 | P a g e

Thus from the above comparisons it is found that Maximal Apripri (Improved Apriori is

the best suited for the database which contains the repeated transaction occurrences

greater than the minimum support. So that many frequent items are found as in one time.

But it leaves many frequent itemsets which are not included in the maximal itemset.

4.3.2 Comparison of FP-Tree variations:

As from reviewing the various techniques i.e. FP-Growth [6], COFI-Tree [20], CT-Pro

[22] and many more [14, 16, 17, 18], we can differentiate them by the following

considerations:

Table 4-3: The Comparison of FP-variations

Algorithm

parameters

FP-Growth COFI-Tree CT-PRO

Structure Simple Tree Based

structure.

Uses Bidirectional FP-

Tree structure.

Uses compressed FP-

Tree data structure.

Approach Recursive Non- Recursive Non- Recursive

Technique It constructs the

conditional frequent

pattern tree and

conditional pattern

base from database

which satisfy the

minimum support.

It constructs the

bidirectional FP-Tree

and builds the COFI-

Trees for each item then

mines the COFI-Tree

locally for each item.

It constructs the

compact FP-Tree

through mapping into

index and then mine

frequent itemsets

according to

projections index

separately

Memory

Utilization

Low as for large

database complete

Tree structure

cannot fit into main

Better, Fit into main

memory due to mining

locally in parts for the

complete tree, Thus

Best, as Compress FP-

tree structure used and

mine according to

projections separately

38 | P a g e

memory every part represent in

main memory

thus easily fit into

main memory

Databases Good for dense

databases

Good for dense as well

as Sparse databases. But

with low support in

sparse databases

performance degrades.

Good for dense as well

as for Sparse

databases.

Complexity It is less complex to

manage. As it does

not divide into parts.

It is difficult to manage

due finding local

frequent and global

frequent.

It is difficult to

manage due to large

number of projections

created.

Thus from the above comparison it is found that CT-PRO and COFI tree algorithms are

better than the FP-Growth but due to their complex structure it is difficult to manage

importantly when hybrid structure is used. Therefore FP-Growth is well suited to mine

the frequent itemsets which is not mined by the maximal Apriori to increase the

efficiency and performance.

4.4 Model Building

This stage is concerned with extraction of patterns for the data. The core of this research

is mainly focused on model building. This phase concerns various view points and

different aspects that should be given attention in order to yield sufficient results.

It starts with examine the existing techniques and found that maximal Apriori (improved

Apriori) and the FP-tree performs better. Maximal Apriori performs better if the same

transaction occurs in the database many times. But not finding the whole frequent

itemsets. Therefore FP-Tree helps the maximal Apriori to find all remaining frequent

itemsets.

39 | P a g e

First at the beginning, In the first scan same set of occurring transactions are found from

the database and save in the two dimension array with the count of repetition. Then find

the maximal frequent itemsets if contained in array i.e. find the maximal transactions

whose occurrence is greater than the user specified limit (support). Take all its non empty

subsets of maximal frequent itemsets as frequent [15]. In this way most of the frequent

itemsets are found. For the remaining itemsets which are frequent but not include in

maximal frequent itemsets will be mined by using tree structure. Therefore database is

pruned by considering only those transactions which contain the 1-itemset frequent items

but not include in maximal frequent itemsets. In this way now construct the FP-Tree only

for pruned (reduced) database. Thus memory consumption for FP-tree is now less due to

reduced database.

4.4.1 Implementation of New Mining Algorithm with Example

In this Section, a new algorithm based upon the improved Apriori and the FP-tree

structure is present.

In a large transactional database like retailer database it is common that multiple items

are selling or purchasing simultaneously therefore the database surly contains various

transactions which contain same set of items. Thus by taking advantage of these

transactions trying to find out the frequent itemsets and prune the database as early as

possible without generating the candidate itemset and multiple database scan, results in

efficiently usage of memory and improved computation.

This proposed algorithm is based upon the Apriori property [2] i.e. all non empty subsets

of the frequent itemsets are frequent.

Algorithm has two procedures. In first procedure, find all those maximal transactions

which are repeating in the database equal to or greater than min user defined support also

known as maximal frequent itemset [15]. Then get all nonempty subsets of those

maximal frequent itemset as frequent according to Apriori property. Scan the database to

find 1-itemset frequent elements. There may be many items found which are 1-itemset

frequent but not include in maximal frequent transactions. Therefore prune the database

40 | P a g e

by just considering only those transactions from the database which contain 1-itemset

frequent elements, but not include in the maximal frequent itemsets. Now this pruned

database is smaller than the actual database in the average cases and no item left in best

case.

For the second procedure, pruned database is taken as input and scan the pruned database

once find 1-itemset frequent and delete those items from transaction which are not 1-

itemset frequent. Then construct the FP-tree [6] only for pruned transactions. In this way

it reduces the memory problem for FP-tree because the database is reduced in most of

cases. In best case no need to build FP-tree because all elements are found in first

procedure. In the worst case if there is no maximal frequent transaction exist, then only

second procedure run and also computational performance is same as FP-tree. The key of

this idea to prune the database after finding the maximal frequent itemsets and formation

of FP-tree for a pruned database thus reduce memory problem in FP-tree and make the

mining process fast. The more detail step as follows:

Procedure1:

Input: Database D, minimum support

Step 1: Take a 2- dimensional array; Put the transaction into 2-dimmension array with

their count of repetition.

Step 2: Arrange them in increasing order on the basis of the pattern length of each

transaction.

Step 3: Find maximal transactions (k-itemset) from the array whose count is greater than

or equal to the minimum support known as maximal frequent itemsets or transactions. If

k-itemsets count is less than minimum support then look for k-itemsets and (k-1)-itemsets

jointly for next (k-1) maximal itemsets and so on until no itemsets count found greater

than minimum support. If no such transaction found then go to Procedure2.

Step 4: Once the maximal frequent transactions found, than according to Apriori

property consider all its non empty subsets are frequent.

41 | P a g e

Step 5: There are itemsets remaining which are not included in maximal frequent itemset

but they are frequent. Therefore find all frequent 1-itemset and prune the database just

considering only those transactions which contain frequent 1-itemset element but not

include in maximal frequent transaction.

Output: some or all frequent itemsets, Pruned database D1.

Procedure2:

Input: Pruned database D1, minimum support

Step 1: Find frequent 1-itemset from pruned database; delete all those items which are

not 1-itemset frequent.

Step 2: Construct FP-tree for mine remaining frequent itemset by following the

procedure of FP-tree algorithm [6] as discussed above in section 2B.

Output: Remaining frequent itemsets

Example:

Suppose table 1 is a database of retailer, D. There are 10 transactions. Suppose the

minimum support is 2.

Table 4-4: Sample Retailer Transactional Database

Tid List of items

T1 I1,I2,I5

T2 I2,I4

T3 I2,I3

T4 I1,I2,I4

T5 I1,I3

T6 I2,I3

42 | P a g e

T7 I1,I3

T8 I1,I2,I3,I5

T9 I1,I2,I3

T10 I1,I2,I3,I5

Procedure 1:

Input: Database D, Minimum support = 2

Step1: After scanning a database put items in 2-dimensional array with the count of

repetition.

Table 4-5: Itemsets in array of Table 4-4

2- itemset count 3-itemset count 4-itemset count

{I2,I3} 2 {I1,I2, I4} 1

{I1,I2,I3, I5}

2

{I1,I3} 2 {I1,I2, I3} 1

{I2,I3} 2 {I1,I2, I4} 1

Step 2: Find maximal itemset (4-itemset). Check weather its count is greater or equal to

specified support, its count is 2 in our case which is equal to given support therefore this

transaction is considered as maximal frequent. (If its count is less than support value then

we scan k-1 and k-itemset in array for k-1 maximal itemset jointly and so on until finding

all maximal frequent itemset from a array. i.e. 3-itemset and 4-itemset for checking 3-

itemset maximal and so on).

Step 3: According to Apriori property subset of maximal frequent itemset is also

considered as frequent .i.e. Maximal frequent itemset: {I1, I2, I3, I5}.All subsets are

frequent (Apriori Property) i.e. {I1, I2, and I3},

{I1, I2, I5}, {I2, I3, I5}, {I2, I3}, {I2, I5}, {I1 , I2}, {I1, I3}, {I1, I5}, {I3, I5}, {I1},

{I2}, {I3}.

43 | P a g e

Step 4: Scan the database for finding the above mined support.

Step 5: Find 1-itemset frequent from database, it is found that I4 which is frequent but

not include in maximal frequent itemset. (There may be many items remain which are not

include in maximal frequent itemsets, in our case only 1 item is there).

Prune the database by considering only transaction which contains I4 itemset.

Output: Some frequent itemsets ({I1, I2, I5}, {I2, I3, I5}, {I2, I3}, {I2, I5}, {I1, I2},

{I1, I3}, {I1, I5}, {I3, I5}, {I1}, {I2}, {I3}), Pr uned database

Table 4-6: Pruned database of Table 4-4

TID List of items

T2 I2,I4

T4 I1,I2,I4

Procedure2:

Input: Pruned database, minimum support = 2

Step 1: Find frequent 1-itemset from pruned database with support = 2, It is found I1 is

not frequent therefore delete it. (In this case delete I1).

Table 4-7: frequency of itemsets of Table 4-4

Itemset frequency

I2 2

I4 2

I1 1

Transactions become: T2: I2, I4 and T4: I2, I4.

Step 2: Construct FP-tree for remaining transaction in pruned database.

1. In this case I2 and I4 have

order (descending order of their frequencies).

2. A new branch is created for each transaction. In this case single branch is created

because of same set of transactions.

Figure

3. Construct Conditional pattern base and FP

Table 4-8: Mining the FP

Item

I4

Thus by this procedure we can easily find unmined frequent itemset i.e. {I4, I2} which

some of previous algorithm [4] are not able to find. Now we get all the

in a particular database.

Output: remaining itemsets ({I4, I2})

Thus the remaining frequent itemsets which are not mined by only maximal frequent

itemsets are mined by the FP

and also in efficiently usage of memory because after pruning whole database is easily fit

into main memory.

In this case I2 and I4 have same frequency, therefore no need to arrange in L

order (descending order of their frequencies).

A new branch is created for each transaction. In this case single branch is created

because of same set of transactions.

Figure 4-2 : FP-tree for transaction Table 4-4

Construct Conditional pattern base and FP-tree only for item I4.

Mining the FP-tree by creating conditional (Sub-) pattern base o

Item Pattern
base

Conditional

FP-tree

Frequent
Item

I4 {I2: 2} {I2:2} {I4,I2:2}

Thus by this procedure we can easily find unmined frequent itemset i.e. {I4, I2} which

some of previous algorithm [4] are not able to find. Now we get all the

remaining itemsets ({I4, I2})

Thus the remaining frequent itemsets which are not mined by only maximal frequent

itemsets are mined by the FP-Growth procedure without generation of candidate itemsets

so in efficiently usage of memory because after pruning whole database is easily fit

44 | P a g e

same frequency, therefore no need to arrange in L

A new branch is created for each transaction. In this case single branch is created

) pattern base of Table 4-4

Thus by this procedure we can easily find unmined frequent itemset i.e. {I4, I2} which

some of previous algorithm [4] are not able to find. Now we get all the frequent itemset

Thus the remaining frequent itemsets which are not mined by only maximal frequent

Growth procedure without generation of candidate itemsets

so in efficiently usage of memory because after pruning whole database is easily fit

45 | P a g e

CHAPTER 5

5. Testing and Result

This chapter demonstrates the experiments that we have performed to evaluate the new

scheme. For the evaluation purpose we have conducted several experiments using the

existing data set. Those experiments performed on computer with Core 2 Duo 2.00 GHZ

CPU, 2.00 GB memory and hard disk 80 GB. All the algorithms were developed by C++

language and for the unit of measuring the time and the memory are second and

megabyte respectively.

5.1 Comparison Analysis

5.1.1 Time Comparison

As a result of the experimental study, revealed the performance of our new technique

with the Apriori and FP-Growth algorithm. The run time is the time to mine the frequent

itemsets. The experimental result of time is shown in Figure 5-1 reveals that the proposed

scheme outperforms the FP-growth and the Apriori approach.

Figure 5-1: The Execution Time for Mushroom Dataset

0

5

10

15

20

25

0 100 200 300 400

T
im

e

Support

Comparison of Execution Time

New Approach

FP-Tree

Apriori

46 | P a g e

As it is clear from the comparison new algorithm performs well for the low support value

for the mushroom dataset which contains 8124 transactions and average length of items

23. But at the higher support its performance matches the FP-Tree and Apriori

algorithms. Apriori performs with larger time. FP-tree produces the approximately same

execution as of new approach in later stages.

Figure 5-2: Execution Time for Artificial dataset

For the artificial dataset which contains the maximal frequent itemset in large amount

shows better result with new approach as shown in figure 5-2 then FP-tree and Apriori

algorithm. In the artificial dataset there are various transactions consider which occur

repeatedly in the database and some transactions occur greater than the minimum

support. The itemset remains for mining frequent itemset are mined with the help of

second procedure whose complexity equals to the FP-Growth algorithm but due to

procedure 1 the overall complexity reduce and become efficient.

0

1

2

3

4

5

6

7

0 20 40 60 80 100

T
im

e

Support

Comparison of Execution Time

New Approach

FP-Tree

Apriori

47 | P a g e

5.1.2 Memory Comparison

Figure 5-3: The memory usage at various support levels on Mushroom dataset

As it is clear from figure 5-3, the memory consumption for the Apriori algorithm is the

highest at all level support because it produces candidate itemsets. The memory

consumption for FP-tree at higher support levels is approximately same as the new

approach because as the support increase the probability of finding the maximal itemset

whose repetition is greater than the minimum support is less thus its working become

same as the FP-Growth algorithm.

Figure 5-4: The memory usage at various support levels on artificial dataset

0

5

10

15

20

25

30

0 100 200 300 400

M
e

m
o

ry

Support

Comparison of Memory

New Approach

FP-Tree

Apriori

0

2

4

6

8

10

12

14

0 20 40 60 80 100

T
im

e

Support

Comparison of Memory

New Approach

FP-Tree

Apriori

48 | P a g e

The above figure 5-4 shows the comparison takes place at sparse dataset, in sparse

dataset data sets containing more enough zero entries (unmarked fields or items), in other

words, the ratio number of fields / number of elements for the data database is smaller.

Since the Apriori algorithm stores and processes only the non-zero entries, it takes the

advantage of pruning most of the infrequent items during the first few passes. Therefore

At high levels support the performances of our proposed scheme and Apriori are near.

But at lower levels it shows that new approach performs well at all support level in

consumption of memory. In this case also Apriori consume large amount of memory

which is more than the FP-Tree and new approach due to its candidate generation

problem. FP-tree approach performs better than the Apriori but not than the new

approach.

We have performed several experiments to evaluate the performance of our scheme

against FP-growth and Apriori, for generating the association rules. To perform the

experiments different values of support were set because with different value of support

the number of the frequent itemsets is different, and the running time and the memory

consumptions are affected by the value of the support.

For both data sets the running time of our new scheme outperformed Apriori and FP-tree

in the sparse data set as well as in dense dataset. The memory comparison for the new

approach, Apriori and FP-Tree in the sparse dataset, at lower support the new approach

performs well but at higher support Apriori and new approach performs approximately

same as FP-Growth.

Therefore it is said from the above results the new approach which is combination of both

improved Apriori and FP-Tree properties performs better than the individual Apriori and

FP-Growth method.

49 | P a g e

CHAPTER 6

6. Conclusion and Future Research

Mining frequent itemsets for the association rule mining from the large transactional

database is a very crucial task. There are many approaches that have been discussed;

nearly all of the previous studies were using Apriori approach and FP-Tree approach for

extracting the frequent itemsets, which have scope for improvement. Thus the goal of this

research was to find a scheme for pulling the rules out of the transactional data sets

considering the time and the memory consumption. This chapter summarizes the work

done in this thesis and then the future scope is given.

6.1 Conclusion

In this thesis, we considered the following factors for creating our new scheme, which are

the time and the memory consumption, these factors are affected by the approach for

finding the frequent itemsets. Work has been done to develop an algorithm which is an

improvement over Apriori and FP-tree with using an approach of improved Apriori and

FP-Tree algorithm for a transactional database. According to our observations, the

performances of the algorithms are strongly depends on the support levels and the

features of the data sets (the nature and the size of the data sets). Therefore we employed

it in our scheme to guarantee the time saving and the memory in the case of sparse and

dense data sets. It is found that for a transactional database where many transaction items

are repeated many times as a super set in that type of database maximal Apriori

(improvement over classical Apriori) is best suited for mining frequent itemsets. The

itemsets which are not included in maximal super set is treated by FP-tree for finding the

remaining frequent itemsets. Thus this algorithm produces frequent itemsets completely.

This approach doesn’t produce candidate itemsets and building FP-tree only for pruned

database that fit into main memory easily. Thus it saves much time and space and

considered as an efficient method as proved from the results.

50 | P a g e

For both data sets the running time and memory consumption of our new scheme

outperformed Apriori. Whereas the running time of our scheme performed well over the

FP-growth on the collected data set at the lower support level where probability of

finding maximal frequent itemsets is large and at higher lever running time is

approximately same as the FP-Tree. The memory consumption is also approximately

same as the FP-Tree at higher support and performed well at lower support.

The main contributions of this research:

We can summarize the main contribution of this research as follows:

• To study and analyze various existing approaches to mine frequent itemsets.

• To devised a new better scheme than classical Apriori and FP-tree alone using

maximal Apriori and FP-tree as combined approach for mining frequent itemsets.

6.2 Future Trends

There are a number of future research directions based on the work presented in this

thesis.

• Using constraints can further reduce the size of itemsets generated and improve

mining efficiency.

• This scheme was applied in retailer industry application, trying other industry is an

interesting field for future work.

• This scheme use Maximal Apriori and FP-Tree. We can use other combination to

improve this approach.

51 | P a g e

Publications

• Bharat Gupta, Dr. Deepak Garg, Karun Verma " A Novel Approach to Mine Frequent

Itemsets Using Maximal Apriori and FP-tree Method" International Journal of

Advanced Computing (IJAC) ISSN: 0975-7686 pp.74-78 Vol 3, Issue 2 April, 2011.

• Bharat Gupta, Dr. Deepak Garg, Karun Verma " FP-Tree Based Algorithms Analysis:

FP-Growth, COFI-Tree and CT-PRO" International Journal of Res Computeria,

Scientia Publication ISSN 2230-9454 to be published in July.

52 | P a g e

References

[1] A. Savasere, E. Omiecinski, and S. Navathe. “An efficient algorithm for mining

association rules in large databases”. In Proc. Int’l Conf. Very Large Data Bases

(VLDB), Sept. 1995, pages 432–443.

[2] Aggrawal.R, Imielinski.t, Swami.A. “Mining Association Rules between Sets of

Items in Large Databases”. In Proc. Int’l Conf. of the 1993 ACM SIGMOD

Conference Washington DC, USA.

[3] Agrawal.R and Srikant.R. “Fast algorithms for mining association rules”. In Proc.

Int’l Conf. Very Large Data Bases (VLDB), Sept. 1994, pages 487–499.

[4] Brin.S, Motwani. R, Ullman. J.D, and S. Tsur. “Dynamic itemset counting and

implication rules for market basket analysis”. In Proc. ACM-SIGMOD Int’l Conf.

Management of Data (SIGMOD), May 1997, pages 255–264.

[5] C. Borgelt. “An Implementation of the FP- growth Algorithm”. Proc. Workshop

Open Software for Data Mining, 1–5.ACMPress, New York, NY, USA 2005.

[6] Han.J, Pei.J, and Yin. Y. “Mining frequent patterns without candidate generation”. In

Proc. ACM-SIGMOD Int’l Conf. Management of Data (SIGMOD), 2000

[7] Park. J. S, M.S. Chen, P.S. Yu. “An effective hash-based algorithm for mining

association rules”. In Proc. ACM-SIGMOD Int’l Conf. Management of Data

(SIGMOD), San Jose, CA, May 1995, pages 175–186.

[8] Pei.J, Han.J, Lu.H, Nishio.S. Tang. S. and Yang. D. “H-mine: Hyper-structure mining

of frequent patterns in large databases”. In Proc. Int’l Conf. Data Mining (ICDM),

November 2001.

[9] C.Borgelt. “Efficient Implementations of Apriori and Eclat”. In Proc. 1st IEEE ICDM

Workshop on Frequent Item Set Mining Implementations, CEUR Workshop

Proceedings 90, Aachen, Germany 2003.

[10] Toivonen.H. “Sampling large databases for association rules”. In Proc. Int’l Conf.

Very Large Data Bases (VLDB), Sept. 1996, Bombay, India, pages 134–145.

[11] Nizar R.Mabrouken, C.I.Ezeife. Taxonomy of Sequential Pattern Mining

Algorithm”. In Proc. in ACM Computing Surveys, Vol 43, No 1, Article 3,

November 2010.

53 | P a g e

[12] Yiwu Xie, Yutong Li, Chunli Wang, Mingyu Lu. “The Optimization and

Improvement of the Apriori Algorithm”. In Proc. Int’l Workshop on Education

Technology and Training & International Workshop on Geoscience and Remote

Sensing 2008.

[13] “Data mining Concepts and Techniques” by By Jiawei Han, Micheline Kamber,

Morgan Kaufmann Publishers, 2006.

[14] S.P Latha, DR. N.Ramaraj. “Algorithm for Efficient Data Mining”. In Proc. Int’l

Conf. on IEEE International Computational Intelligence and Multimedia

Applications, 2007, pp. 66-70.

[15] Dongme Sun, Shaohua Teng, Wei Zhang, Haibin Zhu. “An Algorithm to Improve

the Effectiveness of Apriori”. In Proc. Int’l Conf. on 6th IEEE Int. Conf. on Cognitive

Informatics (ICCI'07), 2007.

[16] Q.Lan, D.Zhang, B.Wu. “A New Algorithm For Frequent Itemsets Mining Based On

Apriori And FP-Tree”. In Proc. Int’l Conf. on Global Congress on Intelligent System,

2009, pp.360-364.

[17] W.LIU, J.CHEn, S.Qu, W.Wan. “An Improved Apriori Algorithm. In Proc. IEEE

International Conference, 2008, pp.221-224”.

[18] S.P Latha, DR. N.Ramaraj. “Agorithm for Efficient Data Mining”. In Proc. Int’l

Conf. IEEE International Computational Intelligence and Multimedia Aplications,

2007, pp. 66-70.

[19] M. El-Hajj and O. R. Zaiane. “Inverted matrix: Efficient discovery of frequent items

in large datasets in the context of interactive mining”. In Proc. Int’l Conf. on Data

Mining and Knowledge Discovery (ACM SIGKDD), August 2003.

[20] M. El-Hajj and O. R. Zaiane. “COFI-tree Mining:A New Approach to Pattern

Growth with Reduced Candidacy Generation”. Proceedings of the ICDM 2003

Workshop on Frequent Itemset Mining Implementations, Melbourne, Florida, USA,

CEUR Workshop Proceedings, vol. 90, pp. 112-119, 2003.

[21] Y. G. Sucahyo and R. P. Gopalan. "CT-ITL: Efficient Frequent Item Set Mining

Using a Compressed Prefix Tree with Pattern Growth". Proceedings of the 14th

Australasian Database Conference, Adelaide, Australia, 2003.

54 | P a g e

[22] Y. G. Sucahyo and R. P. Gopalan. "CT-PRO: A Bottom Up Non Recursive Frequent

Itemset Mining Algorithm Using Compressed FP-Tre Data Structure”. In proc Paper

presented at the IEEE ICDM Workshop on Frequent Itemset Mining Implementation

(FIMI), Brighton UK, 2004.

[23] A.M.Said, P.P.Dominic, A.B. Abdullah. “A Comparative Study of FP-Growth

Variations”. In Proc. International Journal of Computer Science and Network

Security, VOL.9 No.5 may 2009.

[24] Fayyad U. M., Piatetsky-Shapiro G. and Smyth, P. “Data mining to knowledge

discovery in databases, AI Magazine”. Vol. 17, No. 3, pp. 37-54, 1996.

[25] Tan P.-N., Steinbach M., and Kumar V. “Introduction to data mining, Addison

Wesley Publishers”. 2006

[26] Luo D., Cao L., Luo C., Zhang C., and Wang W. “Towards business interestingness

in actionable knowledge discovery”. IOS Press, Vol. 177, pp. 101–111, 2008.

